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Abstract The survival of cemented endosseous implants

can be improved by enhancing the bond between the

implant and the cement. We hypothesized that the light-

inducible generation of super-hydrophilicity of titanium

positively affects its bone cement-philicity and bone

cement–titanium bonding. Commercially pure titanium

disks with machined surface and acid-etched micro

roughened surfaces were prepared. Ultra-violet (UV) light

treatment (0.1 mW/cm2 UVA and 0.03 mW/cm2 UVB for

48 h) created a super-hydrophilic surface for both surface

types. The area of poly-methyl methacrylate (PMMA)-

based bone cement spread increased by 30% and 20% on

the light-treated machined titanium and acid-etched tita-

nium surfaces, respectively, compared to the matched

untreated ones. The contact angle of the bone cement

decreased significantly after the light treatment, confirming

the enhanced wettability of bone cement by the light

treatment. Interfacial tensile stress between the bone

cement material and titanium was increased 100% for the

machined surface and 50% for the acid-etched surface by

light treatment. Interfacial shear stress measured by a push-

out test of titanium rods also revealed a 40% increase for

the machined surface and 25% increase for the acid-etched

surface. In conclusion, the pre-UV light treatment of

titanium enhances the wettability and bonding strength of

poly-methyl-methacrylate-based bone cement.

Introduction

Cement fixation provides excellent stability of titanium

implants and is an essential tool in current orthopedic

implant treatments as represented by total hip arthroplasty

[1–3]. Acrylic resin-based bone cements, primarily consist-

ing of a solid part of a prepolymerized poly-methyl

methacrylate (PMMA) and a liquid part of methyl methac-

rylate (MMA), are the most frequently used materials for this

purpose. Debonding the cement–metallic implant interface

has been implicated as a major cause of failure initiation [1,

4–7]. Micromotion of implants after debonding accelerates

the interfacial wear and eventually results in the higher

chance of early loosening at the cement–implant interface

[5, 6]. It is biomechanically and clinically proven that the

survival of cemented implants can be improved by enhanc-

ing the bond between the implant and the cement [8–10].

To improve the mechanical properties of the bone cement,

various modification techniques have been attempted [11].

Cement containing PMMA fibers in its matrix form seems to

increase fracture resistance [12, 13]. The addition of bio-

glass or bio-ceramic to resin-based cements helps to increase

the mechanical strength of the PMMA cements [14, 15].

These modifications alter the chemical properties, as well as

the mechanical properties, of the materials and require

additional characterization of their biological compatibility.

More importantly, while these approaches may enhance the

intrinsic mechanical properties of the bone cement, they,

however, may be less effective in reinforcing the cement–

metal interface. From a cementing technique standpoint, a
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precoating with a thin layer of PMMA around the implant

stem [9, 10, 16–19] and applying the cement at the earlier

polymerization stage [20] seem to be useful to increase the

cement–implant interfacial strength. However, the

improvement may not be necessarily significant enough to

increase the fixation of implants [21].

The ultraviolet (UV) light generation of a highly

amphiphilic (both hydrophilic and oleolphilic) titanium

surface was first introduced in 1997 [22]. The unique

character of this surface is ascribed to the physicochemical

changes that occur during UV light treatment. A first

possible explanation for this phenomenon is that the gen-

eration of amphiphilicity is due to the removal of surface

contaminants by light-excited hydroxyl groups (hydroxyl

radicals) on the titanium surface. Titanium absorbs the

organic impurities, such as carbon and hydrocarbons,

constantly from the atmosphere, water and cleaning liquid

[23–25]. Secondly, the light treatment may create surface

oxygen vacancies at bridging sites, resulting in the con-

version of relevant Ti4+ sites to Ti3+ sites which are

favorable for dissociative water absorption [22].

We hypothesized that the light-inducible changes in

wettabilities (hydrophilicity, oleophilicity) of titanium

positively affects its bone cement-philicity and bone

cement–titanium bonding. Herein we present a method to

enhance bone cement–titanium interfacial strength without

modifying bone cement materials. The UV light-treated

titanium has been demonstrated to show higher bone

cement wettability and stronger bone cement–titanium

interfacial strength than the untreated control. The effects

of the light treatment were tested for different titanium

surface topographies; a machined, relatively smooth

surface and an acid-etched, relatively rough surface.

Materials and methods

Titanium samples, surface analysis and ultraviolet (UV)

light treatment

Two surface types of commercially pure grade 2 titanium

were prepared for cylindrical rods (1 mm in diameter and

2 mm in length) and disks (20 mm in diameter and 1.5 mm

in thickness). One had a machined surface, turned by a

lathe. The other was acid-etched with H2SO4 and HCl.

Titanium disks and rods were treated with 0.1 mW/cm2

UVA and 0.03 mW/cm2 UVB for 48 h with air ventilation.

The surfaces of the titanium samples were examined by

scanning electron microscopy (SEM) (JSM-5900LV, Joel

Ltd., Tokyo, Japan) and an energy dispersive X-ray spec-

trometer (EDX) (JSM-5900LV, Joel Ltd., Tokyo, Japan).

In addition, machined titanium alloy disks were prepared

from 6Al–4V titanium ELI alloy.

Hydrophilicity and bone cement-philicity tests

Contact angle and spread area of distilled water (hydro-

philicity test) and bone cement (bone cement-philicity test)

were evaluated on the titanium surfaces with or without

UV light pretreatment. Ten microlitre of distilled water

was gently placed on the titanium disks and digitally

photographed immediately. The spread area was measured

as the area of the drop in the top view using a digital

analyzer (Image Pro Plus, Media Cybernetics, Silver

Spring, MD). The contact angle h was obtained by the

equation: h = 2tan-1 (2h/d), where h and d are the height

and diameter of the drop in the side view [26]. Bone

cement was prepared by mixing 18.88 g of liquid and 20 g

of cement powder for 20 s, which was double the liquid

ratio of the manufacturer’s instruction (Endurance MV,

DePuy Orthopaedics, Warsaw, IN). Ten microlitre of the

mixed cement was gently placed on the titanium disks at a

time span of 80 s from the commencement of mixing.

Three independent disks were tested.

Tensile test for titanium–bone cement interface

Bone cement was mixed (18.88 g liquid and 20 g powder)

for 20 s, and 500 lL of the mixed cement was placed onto

the titanium disks for natural spread. After allowing the

cement to polymerize at 37 �C for 24 h, the premade methyl

methacrylate acrylic column (10 mm in diameter) was

attached to the polymerized cement using another fresh

mixture of cement. The cement-column assembly was fur-

ther polymerized for 24 h. The testing machine (Instron 5544

electro-mechanical testing system, Instron, Canton, MA)

equipped with a 2,000 N load cell was used to detach the

bone cement from the titanium surface. The column was

vertically pulled at a crosshead speed of 1 mm/min, and the

interfacial tensile stress was determined by calculating the

peak of the load–displacement curve divided by the spread

area of bone cement. Six independent disks were tested.

Titanium rod push-out test

This method was originally developed and established to

assess the biomechanical strength of bone–implant inte-

gration, and the details are described elsewhere [27]. We

applied this method to assess the titanium–bone cement

interfacial shear stress. The cylindrical rods (1 mm in

diameter and 2 mm in length) with or without light treat-

ment and an acrylic block were prepared. The acrylic block

had pre-made holes of 2 mm in diameter and of 2 mm in

height. The bone cement was prepared by mixing the

powder and liquid as instructed by the manufacturer
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(18.88 g liquid and 40 g powder). At 80 s, the titanium

rods pasted with the prepared bone cement were placed

into the holes of the acrylic block with the top surface level

and flushed with the resin block top surface. The bone

cement was polymerized in a 37 �C for 24 h. The Instron

machine loaded the titanium rod vertically downward at a

crosshead speed of 1 mm/min, and the interfacial shear

stress defined as the peak load of load–displacement curve

divided by the area of the sidewall of the titanium rod was

measured. Six independent titanium samples were tested.

Morphology of cement–titanium interface after tensile

test

To examine the titanium–cement detachment behavior,

titanium surfaces after the tensile test were examined by

scanning electron microscopy (SEM) (JSM-5900LV, Joel

Ltd., Tokyo, Japan).

Statistical analysis

Two-way ANOVA was used to assess the effect of titanium

surface roughness and UV light treatment on the bone

cement wettability variables, titanium–cement tensile and

shear stress variables. Bonferroni multiple comparison was

used as a post-hoc test to examine differences between the

untreated control and light-treated titanium surfaces;\0.05

was considered statistically significant.

Results

Surface characteristics of titanium

High and low magnification SEM images showed concen-

trically turned ridges on the machined surface (Fig. 1a, c),

whereas the acid-etched surface was uniformly roughened

(Fig. 1b). High magnification SEM revealed the micron-

level roughness with defined peaks and valleys on the acid-

etched surface (Fig. 1d). EDX showed that both machined

and acid-etched titanium showed only an elemental peak of

titanium, and no differences were found before and after the

UV light treatment.

Super-hydrophilic titanium surfaces induced by light

treatment

The spread area of 10 lL water drop dramatically

increased on the UV light-treated machined (13 times) and

acid-etched (30 times) surfaces compared to the respective

untreated surfaces (Fig. 2a, b). The contact angle of water

before treatment, which was approximately 70� and 90� for

the machined and acid-etched surfaces, respectively,

plummeted to 0.0 ± 0.0� after light treatment, indicating

the emergence of super-hydrophilic surfaces (Fig. 2c).

Increased bone cement wettability on light-treated

titanium

The area of bone cement spread increased by 30% and 20

% on the light-treated machined titanium and acid-etched

titanium surfaces compared to the matched untreated ones

(p \ 0.01) (Fig. 3a, b). The contact angle of the bone

cement decreased significantly after the light treatment

(p \ 0.01) (Fig. 3c), confirming the enhanced wettability

of bone cement by the light treatment.

Increased bone cement–titanium tensile stress by light

treatment

Two way ANOVA showed that the cement–titanium

interfacial stress measured by the tensile test is approxi-

mately two times higher for the acid-etched surface than

for the machined surface (p \ 0.01) (Fig. 4). The tensile

stress was increased by the light-treatment of titanium

approximately 1.8-fold for machined surface (p \ 0.01,

Machined surface Acid-etched surface

(a)

(c)

(b)

(d)

Fig. 1 Surface morphology of titanium surfaces used in this study.

Scanning electron micrographs of the machined surface (a, c) and

acid-etched surface (b, d). Bar = 20 lm in (a) and (b), 5 lm in (c)

and (d)
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Bonferroni) and 1.5 times for the acid-etched surface

(p \ 0.01).

Increased bone cement–titanium shear stress by light

treatment

The cement–titanium shear stress measured by the push-

out test was increased by the light-treatment of titanium

implants by 40% for the machined surface (p \ 0.05) and

25% for the acid-etched surface (p \ 0.01) (Fig. 5). The

shear stress was higher for the acid-etched surfaces than for

the machined surfaces even after the light treatment

(p \ 0.01).

Morphology of dissociated cement–titanium interface

The untreated control machined surfaces showed surface

images identical to their original parallel-stripe morphol-

ogy and there was no remaining cement component after

the bone cement tensile test (Fig. 6a, e). In contrast, some

areas of the light-treated machined surface exhibited a thin

layer of cement remnant along the parallel ridge pattern

(Fig. 6b, f).

Although difficult to recognize in the low magnification

image (Fig. 6c), high magnification images revealed that

the post-tensile test acid-etched surface retained the cement

material, mostly tangled along the roughened peaks (black

arrow heads in Fig. 6g) and filled into the micron-level pit

structures (white arrow heads in Fig. 6g). The light-treated

acid-etched surface was extensively covered by a relatively
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thick cement material after the tensile test (Fig. 6d). The

cement remnant varied in thickness, and a sheared

appearance can be seen in some areas. Most of the cement

remnant appeared to be attached firmly to the titanium

surface, although a portion of the remnant began to slough

off from the titanium surface (black arrows in Fig. 6h).

Cement materials that were sheared but still engaged into

the pits are clearly seen on the light-treated acid-etched

surface (white arrow head in Fig. 6h).

Increased bone cement wettability on light-treated

titanium alloy

The light-induced cement wettability was also found on the

titanium alloy. The area of bone cement spread increased

by 50% on the light-treated machined titanium alloy

(Fig. 7) compared to the untreated one. The contact angle

of the bone cement decreased accordingly after the light

treatment.

Discussion

This is the first study, to our knowledge, demonstrating the

potential, therapeutic usefulness of light-treated titanium in

endosseous implant treatments. We hypothesized that the

light-induced superhydrophilic status positively affects

cement wettability and eventually its bonding strength to

the titanium surface. Although the improved wettability of

bone cement was not as remarkable as seen in water in

terms of the spread area or contact angle, probably due to

the much higher viscosity, the improved wettability of

cement was sufficient enough to enhance the cement–tita-

nium interfacial strength by up to two times, supporting our

hypothesis. The method is novel and significant in that the

effect is obtained without changing the surface roughness

of titanium, the chemistry of bone cement or any cement-

ing procedure. Further, the successful results for the

different surface topographies of titanium suggest that the

utility of this discovery may be universal for various

surface types of titanium-containing implant materials.

Considerable efforts have been made to mechanically

improve the cement–metal interface as a potential, trig-

gering factor for implant loosening and failure. Proven

improvements to the interfacial strength include the use of

roughened implant surfaces and clinical techniques when

applying bone cement [28–30]. For instance, grit-blasted

rough surfaces and chemically treated surfaces with

porosity generate strong interfacial shear strength over the

polished, smooth surface [18, 19, 31]. However, a number

of clinical studies raised notable concerns associated with

the use of roughened implant surfaces, revealing a detri-

mental aspect of an increased rate of implant loosening and

osteolysis [32, 33]. The release of implant surface structure

and cement component wear debris into the peri-implant

tissue has been invariably observed in histological sections
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Scanning electron micrographs
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untreated acid-etched surface (c,

g), and UV light-treated acid-

etched surfaces (d, h) after

performing the bone cement

tensile test. Bar = 20 lm in the

(a)–(d), 4 lm in (e–h)
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[34, 35] and suggested to be a cause [7, 33]. Therefore,

smooth surfaces that allow the subsidence and micromo-

tion of an implant without damaging the cement mantle

and titanium surface may be secure [36]. The presented

physicochemical activation, that has effectively boosted

the interfacial strength of the cement-machined smooth

surface, is meaningful and should be utilized in the clinical

environment.

We used the increased ratio of liquid for the cement-

philicity test and tensile test. With the normal powder and

liquid ratio, the mixed bone cement was not fluid enough to

spread on the titanium disks. The bone cement mixture

could have been pasted onto the titanium disks by an

instrument for the tensile test. However, we considered a

concern that the bone cement may not be placed in a

reproducible manner by an instrument, in terms of the area

and intimacy of the cement material, and decided to let the

bone cement spread without artificial force. Instead, the

results of the tensile test were confirmed by shear tests

using the bone cement with a regular powder/liquid ratio.

In this shear study, we utilized the titanium rods whose

sizes were applicable to in vivo rat model we established

[27]. The titanium implants with or without UV treatment

may be placed with bone cement into the rat femur in the

future. The biomechanical strength of implant retention

will be assessed and compared to the present in vitro out-

come for consistency. In this study, we only examined an

immediate effect of light treatment of titanium on the

cement–titanium interfacial stress. The long-term fatigue

test, the effectiveness of the light treatment on the bone

cement interface under the cyclically loaded and/or wet

conditions are needed to be examined in future studies

[37, 38].

Implant placement involves an unavoidable formation of

interfacial porosity and microgap at the interfacial cement.

It is interpreted being as the result of incomplete coverage

of bone cement, and cement shrinkage away from the

implant surface toward the outer surface of the cement. An

experimental study showed that the gap between the

cement and implant varies significantly, ranging from 0 to

16 lm, depending on the implant surface roughness, and

that the gap formation can be minimized by PMMA cement

precoating [18]. The degree of the gap formation corre-

sponded to the clinically and post-mortem observed

debonding of the interface [18]. There is a supporting

report that showed that the porosity at the cement–implant

interface may cause the fluid penetration and result in the

lower interfacial strength [38]. Further, an in vitro biome-

chanical study demonstrated a close relationship between

the time to cementation and cement–metal bonding

strength [20]. Earlier cementation, before doughy the stage

of the acrylic cement, resulted in higher tensile and shear

strengths, particularly for the grit-blasted rough surface.

Our SEM examination revealed that the light-treated tita-

nium surfaces associated themselves with the bone cement

remnant after the tensile test, suggesting the improved

infiltration of cement material into the microstructure of the

titanium surfaces. These documentations have confirmed a

critical role of cement philicity, particularly the degree of

intimate contact, onto the prosthetic material in determin-

ing the interfacial strength. It is known that increased

roughness does not necessarily increase the interfacial

strength of cement, since inherently high viscous cement

does not infiltrate sufficiently into the surface roughness

and rather augments additional air being trapped [18]. The

light treatment may be particularly effective in solving this

concern, as represented by the bone cement remnant

interlocked into the detail of the acid-etched micro-

roughness, vividly observed by SEM.

The light-induced superhydrophilicity is known to be

obtained on various types of substrates containing titanium

components [39, 40]. Also, this study demonstrated that the

bone cement-philicity was increased on titanium alloy

disks. Therefore, we may assume that the effectiveness of

the present UV technique is promising on titanium alloys.

The effect of light treatment on the creation of hydrophi-

licity of other implantable metals, such as chromium–

cobalt alloy, has not been addressed previously or in the
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present study, and may be of immediate and great interest.

The feasibility of light treatment technique also needs to be

examined for its effectiveness on chemically modified

titanium, such as ceramic coated titanium [41], hydroxy-

apatite coated titanium [42], and calcium phosphate coated

titanium [43], since these surfaces have been regularly

introduced into the field. Another crucial issue is that the

future use of acrylic bone cement. The acrylic bone cement

inherently limits the biocompatibility and long-term pre-

diction of implants [44, 45]. There is a trend toward

cement-free implantation to avoid bone cement complica-

tions, including the rate of immediate death post-

cementation [44, 45]. Biological as well as the biome-

chanical aspects of bone cement need to be considered for

better lifetime predictability of implant therapy.

In conclusion, UV light treatment of titanium enables

more intimate contact and interlocking of bone cement to

the titanium surfaces, resulting in the enhancement of

cement–titanium interfacial strength. Given that there is no

practical and effective way to improve the cement–metal

interfacial mechanical properties other than cement pre-

coating, this technique may be expected as a relatively

simple and effective measure to improve cement-implant

bonding strength in the near future for orthopedic implant

therapy.
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